Nuprl Lemma : decidable__squash-list-match-ext
∀[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ].
  ((∀a:A. ∀b:B.  Dec(R[a;b])) 
⇒ (∀as:A List. ∀bs:B List.  Dec(↓list-match(as;bs;a,b.R[a;b]))))
Proof
Definitions occuring in Statement : 
list-match: list-match(L1;L2;a,b.R[a; b])
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
ifthenelse: if b then t else f fi 
, 
it: ⋅
, 
btrue: tt
, 
let: let, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
unit: Unit
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
decidable__squash-list-match, 
decidable__squash-list-match-aux-ext
Lemmas referenced : 
decidable__squash-list-match, 
subtype_base_sq, 
unit_wf2, 
unit_subtype_base, 
trivial-equal, 
decidable__squash-list-match-aux-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
cumulativity, 
independent_isectElimination, 
axiomEquality, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  \mforall{}b:B.    Dec(R[a;b]))  {}\mRightarrow{}  (\mforall{}as:A  List.  \mforall{}bs:B  List.    Dec(\mdownarrow{}list-match(as;bs;a,b.R[a;b]))))
Date html generated:
2018_05_21-PM-00_50_17
Last ObjectModification:
2018_05_19-AM-06_51_35
Theory : list_1
Home
Index