Nuprl Lemma : decidable__squash-list-match-ext

[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ].
  ((∀a:A. ∀b:B.  Dec(R[a;b]))  (∀as:A List. ∀bs:B List.  Dec(↓list-match(as;bs;a,b.R[a;b]))))


Proof




Definitions occuring in Statement :  list-match: list-match(L1;L2;a,b.R[a; b]) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] squash: T implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T ifthenelse: if then else fi  it: btrue: tt let: let uall: [x:A]. B[x] uimplies: supposing a unit: Unit sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} decidable__squash-list-match decidable__squash-list-match-aux-ext
Lemmas referenced :  decidable__squash-list-match subtype_base_sq unit_wf2 unit_subtype_base trivial-equal decidable__squash-list-match-aux-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination cumulativity independent_isectElimination axiomEquality natural_numberEquality dependent_functionElimination independent_functionElimination because_Cache

Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  \mforall{}b:B.    Dec(R[a;b]))  {}\mRightarrow{}  (\mforall{}as:A  List.  \mforall{}bs:B  List.    Dec(\mdownarrow{}list-match(as;bs;a,b.R[a;b]))))



Date html generated: 2018_05_21-PM-00_50_17
Last ObjectModification: 2018_05_19-AM-06_51_35

Theory : list_1


Home Index