Nuprl Lemma : eq_cons_imp_eq_hds

[A:Type]. ∀[a,b:A]. ∀[as,bs:A List].  b ∈ supposing [a as] [b bs] ∈ (A List)


Proof




Definitions occuring in Statement :  cons: [a b] list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a prop: top: Top subtype_rel: A ⊆B ge: i ≥  all: x:A. B[x] or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False cons: [a b] implies:  Q guard: {T} nat: decidable: Dec(P) iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T subtract: m le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  equal_wf list_wf cons_wf length_cons_ge_one subtype_rel_list top_wf ge_wf length_wf hd_wf list-cases length_of_nil_lemma satisfiable-full-omega-tt intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__le false_wf not-ge-2 sq_stable__le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 reduce_hd_cons_lemma squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache universeEquality isect_memberFormation sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry voidElimination voidEquality applyEquality independent_isectElimination lambdaEquality dependent_set_memberEquality natural_numberEquality applyLambdaEquality setElimination rename dependent_functionElimination unionElimination dependent_pairFormation intEquality computeAll promote_hyp hypothesis_subsumption productElimination lambdaFormation addEquality independent_pairFormation independent_functionElimination imageMemberEquality baseClosed imageElimination minusEquality

Latex:
\mforall{}[A:Type].  \mforall{}[a,b:A].  \mforall{}[as,bs:A  List].    a  =  b  supposing  [a  /  as]  =  [b  /  bs]



Date html generated: 2017_04_14-AM-09_27_05
Last ObjectModification: 2017_02_27-PM-04_00_52

Theory : list_1


Home Index