Step
*
2
1
1
of Lemma
finite-partition
.....equality.....
1. n : ℤ
2. 0 < n
3. k : ℕ
4. c : ℕn ⟶ ℕk
5. p : ℕk ⟶ (ℕ List)
6. Σ(||p j|| | j < k) = (n - 1) ∈ ℤ
7. ∀j:ℕk. ∀x,y:ℕ||p j||. p j[x] > p j[y] supposing x < y
8. ∀j:ℕk. ∀x:ℕ||p j||. (p j[x] < n - 1 c∧ ((c p j[x]) = j ∈ ℤ))
⊢ Σ(||if (c (n - 1) =z j) then [n - 1 / (p j)] else p j fi || | j < k)
= Σ(if (c (n - 1) =z j) then ||[n - 1 / (p j)]|| else ||p j|| fi | j < k)
∈ ℤ
BY
{ TACTIC:(((BLemma `sum_functionality` THEN Auto) THEN SplitOnConclITE) THEN Auto) }
Latex:
Latex:
.....equality.....
1. n : \mBbbZ{}
2. 0 < n
3. k : \mBbbN{}
4. c : \mBbbN{}n {}\mrightarrow{} \mBbbN{}k
5. p : \mBbbN{}k {}\mrightarrow{} (\mBbbN{} List)
6. \mSigma{}(||p j|| | j < k) = (n - 1)
7. \mforall{}j:\mBbbN{}k. \mforall{}x,y:\mBbbN{}||p j||. p j[x] > p j[y] supposing x < y
8. \mforall{}j:\mBbbN{}k. \mforall{}x:\mBbbN{}||p j||. (p j[x] < n - 1 c\mwedge{} ((c p j[x]) = j))
\mvdash{} \mSigma{}(||if (c (n - 1) =\msubz{} j) then [n - 1 / (p j)] else p j fi || | j < k)
= \mSigma{}(if (c (n - 1) =\msubz{} j) then ||[n - 1 / (p j)]|| else ||p j|| fi | j < k)
By
Latex:
TACTIC:(((BLemma `sum\_functionality` THEN Auto) THEN SplitOnConclITE) THEN Auto)
Home
Index