Nuprl Lemma : firstn_last_sq

[T:Type]. ∀[L:T List].  firstn(||L|| 1;L) [last(L)] supposing (¬↑null(L)) ∧ (T ⊆Base)


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) last: last(L) length: ||as|| null: null(as) append: as bs cons: [a b] nil: [] list: List assert: b uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] not: ¬A and: P ∧ Q subtract: m natural_number: $n base: Base universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} prop:
Lemmas referenced :  subtype_base_sq list_subtype_base firstn_last and_wf not_wf assert_wf null_wf subtype_rel_wf base_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin instantiate lemma_by_obid isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom sqequalRule isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    L  \msim{}  firstn(||L||  -  1;L)  @  [last(L)]  supposing  (\mneg{}\muparrow{}null(L))  \mwedge{}  (T  \msubseteq{}r  Base)



Date html generated: 2016_05_14-PM-02_06_00
Last ObjectModification: 2015_12_26-PM-05_08_20

Theory : list_1


Home Index