Nuprl Lemma : firstn_last_sq
∀[T:Type]. ∀[L:T List].  L ~ firstn(||L|| - 1;L) @ [last(L)] supposing (¬↑null(L)) ∧ (T ⊆r Base)
Proof
Definitions occuring in Statement : 
firstn: firstn(n;as)
, 
last: last(L)
, 
length: ||as||
, 
null: null(as)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
subtract: n - m
, 
natural_number: $n
, 
base: Base
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
subtype_base_sq, 
list_subtype_base, 
firstn_last, 
and_wf, 
not_wf, 
assert_wf, 
null_wf, 
subtype_rel_wf, 
base_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
instantiate, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    L  \msim{}  firstn(||L||  -  1;L)  @  [last(L)]  supposing  (\mneg{}\muparrow{}null(L))  \mwedge{}  (T  \msubseteq{}r  Base)
Date html generated:
2016_05_14-PM-02_06_00
Last ObjectModification:
2015_12_26-PM-05_08_20
Theory : list_1
Home
Index