Step
*
of Lemma
from-upto-decomp-last
∀[n,m:ℤ]. [n, m) = ([n, m - 1) @ [m - 1]) ∈ (ℤ List) supposing n < m
BY
{ (Auto
THEN (Assert ⌜∃k:ℕ. (m = (n + k) ∈ ℤ)⌝⋅ THENA (InstConcl [⌜m - n⌝]⋅ THEN Auto'))
THEN ExRepD
THEN HypSubst' (-1) 0
THEN (HypSubst' (-1) (-3) THENA Auto)
THEN (Assert ⌜0 < k⌝⋅ THENA Auto')
THEN ThinVar `m'
THEN Thin (-2)
THEN MoveToConcl 1
THEN NatInd (-2)
THEN Auto) }
1
1. k : ℤ
2. 0 < k
3. 0 < k - 1
⇒ (∀n:ℤ. ([n, n + (k - 1)) = ([n, (n + (k - 1)) - 1) @ [(n + (k - 1)) - 1]) ∈ (ℤ List)))
4. 0 < k
5. n : ℤ
⊢ [n, n + k) = ([n, (n + k) - 1) @ [(n + k) - 1]) ∈ (ℤ List)
Latex:
Latex:
\mforall{}[n,m:\mBbbZ{}]. [n, m) = ([n, m - 1) @ [m - 1]) supposing n < m
By
Latex:
(Auto
THEN (Assert \mkleeneopen{}\mexists{}k:\mBbbN{}. (m = (n + k))\mkleeneclose{}\mcdot{} THENA (InstConcl [\mkleeneopen{}m - n\mkleeneclose{}]\mcdot{} THEN Auto'))
THEN ExRepD
THEN HypSubst' (-1) 0
THEN (HypSubst' (-1) (-3) THENA Auto)
THEN (Assert \mkleeneopen{}0 < k\mkleeneclose{}\mcdot{} THENA Auto')
THEN ThinVar `m'
THEN Thin (-2)
THEN MoveToConcl 1
THEN NatInd (-2)
THEN Auto)
Home
Index