Step
*
1
of Lemma
from-upto-decomp-last
1. k : ℤ
2. 0 < k
3. 0 < k - 1
⇒ (∀n:ℤ. ([n, n + (k - 1)) = ([n, (n + (k - 1)) - 1) @ [(n + (k - 1)) - 1]) ∈ (ℤ List)))
4. 0 < k
5. n : ℤ
⊢ [n, n + k) = ([n, (n + k) - 1) @ [(n + k) - 1]) ∈ (ℤ List)
BY
{ (Decide ⌜k = 1 ∈ ℤ⌝⋅ THENA Auto) }
1
1. k : ℤ
2. 0 < k
3. 0 < k - 1
⇒ (∀n:ℤ. ([n, n + (k - 1)) = ([n, (n + (k - 1)) - 1) @ [(n + (k - 1)) - 1]) ∈ (ℤ List)))
4. 0 < k
5. n : ℤ
6. k = 1 ∈ ℤ
⊢ [n, n + k) = ([n, (n + k) - 1) @ [(n + k) - 1]) ∈ (ℤ List)
2
1. k : ℤ
2. 0 < k
3. 0 < k - 1
⇒ (∀n:ℤ. ([n, n + (k - 1)) = ([n, (n + (k - 1)) - 1) @ [(n + (k - 1)) - 1]) ∈ (ℤ List)))
4. 0 < k
5. n : ℤ
6. ¬(k = 1 ∈ ℤ)
⊢ [n, n + k) = ([n, (n + k) - 1) @ [(n + k) - 1]) ∈ (ℤ List)
Latex:
Latex:
1. k : \mBbbZ{}
2. 0 < k
3. 0 < k - 1 {}\mRightarrow{} (\mforall{}n:\mBbbZ{}. ([n, n + (k - 1)) = ([n, (n + (k - 1)) - 1) @ [(n + (k - 1)) - 1])))
4. 0 < k
5. n : \mBbbZ{}
\mvdash{} [n, n + k) = ([n, (n + k) - 1) @ [(n + k) - 1])
By
Latex:
(Decide \mkleeneopen{}k = 1\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index