Nuprl Lemma : from-upto-decomp-last
∀[n,m:ℤ].  [n, m) = ([n, m - 1) @ [m - 1]) ∈ (ℤ List) supposing n < m
Proof
Definitions occuring in Statement : 
from-upto: [n, m)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
ge: i ≥ j 
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
from-upto: [n, m)
, 
has-value: (a)↓
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
subtract: n - m
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
decidable__le, 
subtract_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
equal-wf-base-T, 
int_subtype_base, 
subtype_base_sq, 
less_than_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
nat_properties, 
decidable__lt, 
ge_wf, 
lt_int_wf, 
bool_wf, 
value-type-has-value, 
int-value-type, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
cons_wf, 
list_wf, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
nil_wf, 
add-subtract-cancel, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
list_subtype_base, 
set_subtype_base, 
from-upto_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_pairFormation, 
dependent_set_memberEquality, 
because_Cache, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
natural_numberEquality, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
applyEquality, 
addEquality, 
setElimination, 
rename, 
productElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
intWeakElimination, 
lambdaFormation, 
axiomEquality, 
callbyvalueReduce, 
equalityElimination, 
promote_hyp, 
minusEquality, 
setEquality, 
productEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].    [n,  m)  =  ([n,  m  -  1)  @  [m  -  1])  supposing  n  <  m
Date html generated:
2018_05_21-PM-00_40_26
Last ObjectModification:
2018_05_19-AM-06_46_05
Theory : list_1
Home
Index