Nuprl Lemma : from-upto-decomp-last

[n,m:ℤ].  [n, m) ([n, 1) [m 1]) ∈ (ℤ List) supposing n < m


Proof




Definitions occuring in Statement :  from-upto: [n, m) append: as bs cons: [a b] nil: [] list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} squash: T true: True iff: ⇐⇒ Q ge: i ≥  less_than: a < b less_than': less_than'(a;b) from-upto: [n, m) has-value: (a)↓ bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b subtract: m append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  decidable__le subtract_wf full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma equal-wf-base-T int_subtype_base subtype_base_sq less_than_wf squash_wf true_wf subtype_rel_self iff_weakening_equal nat_properties decidable__lt ge_wf lt_int_wf bool_wf value-type-has-value int-value-type eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot cons_wf list_wf add-associates add-swap add-commutes zero-add nil_wf add-subtract-cancel list_ind_nil_lemma list_ind_cons_lemma list_subtype_base set_subtype_base from-upto_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_pairFormation dependent_set_memberEquality because_Cache extract_by_obid sqequalHypSubstitution dependent_functionElimination thin natural_numberEquality isectElimination hypothesisEquality hypothesis unionElimination independent_isectElimination approximateComputation independent_functionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation applyEquality addEquality setElimination rename productElimination instantiate cumulativity equalityTransitivity equalitySymmetry imageElimination imageMemberEquality baseClosed universeEquality intWeakElimination lambdaFormation axiomEquality callbyvalueReduce equalityElimination promote_hyp minusEquality setEquality productEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].    [n,  m)  =  ([n,  m  -  1)  @  [m  -  1])  supposing  n  <  m



Date html generated: 2018_05_21-PM-00_40_26
Last ObjectModification: 2018_05_19-AM-06_46_05

Theory : list_1


Home Index