Nuprl Lemma : l_all-map

[T,A:Type].  ∀as:T List. ∀f:T ⟶ A. ∀P:A ⟶ ℙ.  ((∀x∈map(f;as).P[x]) ⇐⇒ (∀x∈as.P[f x]))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) map: map(f;as) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_implies:  Q exists: x:A. B[x] guard: {T}
Lemmas referenced :  l_all_iff map_wf l_member_wf member_map equal_wf l_all_wf list_wf member-map and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination cumulativity functionExtensionality applyEquality hypothesis sqequalRule lambdaEquality setElimination rename setEquality productElimination independent_functionElimination dependent_pairFormation productEquality because_Cache functionEquality universeEquality hyp_replacement equalitySymmetry dependent_set_memberEquality equalityTransitivity applyLambdaEquality

Latex:
\mforall{}[T,A:Type].    \mforall{}as:T  List.  \mforall{}f:T  {}\mrightarrow{}  A.  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x\mmember{}map(f;as).P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}as.P[f  x]))



Date html generated: 2017_04_17-AM-07_30_33
Last ObjectModification: 2017_02_27-PM-04_08_06

Theory : list_1


Home Index