Nuprl Lemma : l_all-map
∀[T,A:Type].  ∀as:T List. ∀f:T ⟶ A. ∀P:A ⟶ ℙ.  ((∀x∈map(f;as).P[x]) 
⇐⇒ (∀x∈as.P[f x]))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
l_all_iff, 
map_wf, 
l_member_wf, 
member_map, 
equal_wf, 
l_all_wf, 
list_wf, 
member-map, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
cumulativity, 
functionExtensionality, 
applyEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
productEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
equalityTransitivity, 
applyLambdaEquality
Latex:
\mforall{}[T,A:Type].    \mforall{}as:T  List.  \mforall{}f:T  {}\mrightarrow{}  A.  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x\mmember{}map(f;as).P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}as.P[f  x]))
Date html generated:
2017_04_17-AM-07_30_33
Last ObjectModification:
2017_02_27-PM-04_08_06
Theory : list_1
Home
Index