Nuprl Lemma : l_all_sublist

[A:Type]. ∀P:A ⟶ ℙ. ∀as,bs:A List.  (as ⊆ bs  (∀x∈bs.P[x])  (∀x∈as.P[x]))


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 l_all: (∀x∈L.P[x]) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T}
Lemmas referenced :  l_all_iff l_member_wf member_sublist l_all_wf sublist_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality applyEquality setElimination rename setEquality hypothesis productElimination independent_functionElimination because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}as,bs:A  List.    (as  \msubseteq{}  bs  {}\mRightarrow{}  (\mforall{}x\mmember{}bs.P[x])  {}\mRightarrow{}  (\mforall{}x\mmember{}as.P[x]))



Date html generated: 2016_05_14-PM-02_45_55
Last ObjectModification: 2015_12_26-PM-02_39_17

Theory : list_1


Home Index