Nuprl Lemma : member_sublist
∀[T:Type]. ∀L1,L2:T List.  (L1 ⊆ L2 
⇒ {∀x:T. ((x ∈ L1) 
⇒ (x ∈ L2))})
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sublist: L1 ⊆ L2
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
member: t ∈ T
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
int_seg_wf, 
lelt_wf, 
length_wf, 
non_neg_length, 
nat_properties, 
decidable__lt, 
length_wf_nat, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
less_than_wf, 
select_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
exists_wf, 
nat_wf, 
sublist_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
dependent_pairFormation, 
cut, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
because_Cache, 
hypothesis, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
cumulativity, 
dependent_functionElimination, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
independent_functionElimination, 
voidElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (L1  \msubseteq{}  L2  {}\mRightarrow{}  \{\mforall{}x:T.  ((x  \mmember{}  L1)  {}\mRightarrow{}  (x  \mmember{}  L2))\})
Date html generated:
2017_04_14-AM-09_29_13
Last ObjectModification:
2017_02_27-PM-04_01_41
Theory : list_1
Home
Index