Nuprl Lemma : member_sublist

[T:Type]. ∀L1,L2:T List.  (L1 ⊆ L2  {∀x:T. ((x ∈ L1)  (x ∈ L2))})


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 l_member: (x ∈ l) list: List uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q sublist: L1 ⊆ L2 guard: {T} exists: x:A. B[x] and: P ∧ Q l_member: (x ∈ l) cand: c∧ B member: t ∈ T nat: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B prop: subtype_rel: A ⊆B ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A false: False uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top squash: T true: True iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  int_seg_wf lelt_wf length_wf non_neg_length nat_properties decidable__lt length_wf_nat int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf equal_wf squash_wf true_wf iff_weakening_equal less_than_wf select_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma exists_wf nat_wf sublist_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule dependent_pairFormation cut applyEquality functionExtensionality hypothesisEquality introduction extract_by_obid isectElimination natural_numberEquality because_Cache hypothesis setElimination rename dependent_set_memberEquality independent_pairFormation cumulativity dependent_functionElimination unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality independent_functionElimination voidElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll imageElimination imageMemberEquality baseClosed universeEquality productEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (L1  \msubseteq{}  L2  {}\mRightarrow{}  \{\mforall{}x:T.  ((x  \mmember{}  L1)  {}\mRightarrow{}  (x  \mmember{}  L2))\})



Date html generated: 2017_04_14-AM-09_29_13
Last ObjectModification: 2017_02_27-PM-04_01_41

Theory : list_1


Home Index