Nuprl Lemma : l_before_member2

[T:Type]. ∀L:T List. ∀a,b:T.  (a before b ∈  (a ∈ L))


Proof




Definitions occuring in Statement :  l_before: before y ∈ l l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  l_before: before y ∈ l uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q cand: c∧ B top: Top
Lemmas referenced :  sublist_wf cons_wf nil_wf list_wf member_iff_sublist sublist_transitivity nil-sublist cons_sublist_cons
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :universeIsType,  universeEquality dependent_functionElimination productElimination independent_functionElimination inlFormation independent_pairFormation isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}a,b:T.    (a  before  b  \mmember{}  L  {}\mRightarrow{}  (a  \mmember{}  L))



Date html generated: 2019_06_20-PM-01_23_25
Last ObjectModification: 2018_09_26-PM-05_27_56

Theory : list_1


Home Index