Nuprl Lemma : l_before_select

[T:Type]. ∀L:T List. ∀i,j:ℕ||L||.  L[j] before L[i] ∈ supposing j < i


Proof




Definitions occuring in Statement :  l_before: before y ∈ l select: L[n] length: ||as|| list: List int_seg: {i..j-} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  l_before: before y ∈ l uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T prop: int_seg: {i..j-}
Lemmas referenced :  member-less_than sublist_pair less_than_wf int_seg_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis rename hypothesisEquality dependent_functionElimination setElimination natural_numberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i,j:\mBbbN{}||L||.    L[j]  before  L[i]  \mmember{}  L  supposing  j  <  i



Date html generated: 2016_05_14-AM-07_45_39
Last ObjectModification: 2015_12_26-PM-02_53_32

Theory : list_1


Home Index