Nuprl Lemma : l_before_select
∀[T:Type]. ∀L:T List. ∀i,j:ℕ||L||.  L[j] before L[i] ∈ L supposing j < i
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
l_before: x before y ∈ l
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
int_seg: {i..j-}
Lemmas referenced : 
member-less_than, 
sublist_pair, 
less_than_wf, 
int_seg_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
rename, 
hypothesisEquality, 
dependent_functionElimination, 
setElimination, 
natural_numberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i,j:\mBbbN{}||L||.    L[j]  before  L[i]  \mmember{}  L  supposing  j  <  i
Date html generated:
2016_05_14-AM-07_45_39
Last ObjectModification:
2015_12_26-PM-02_53_32
Theory : list_1
Home
Index