Nuprl Lemma : sublist_pair
∀[T:Type]. ∀L:T List. ∀i,j:ℕ||L||.  [L[i]; L[j]] ⊆ L supposing i < j
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2, 
select: L[n], 
length: ||as||, 
cons: [a / b], 
nil: [], 
list: T List, 
int_seg: {i..j-}, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
int_seg: {i..j-}, 
sublist: L1 ⊆ L2, 
exists: ∃x:A. B[x], 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
nat: ℕ, 
less_than': less_than'(a;b), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
ge: i ≥ j , 
guard: {T}, 
increasing: increasing(f;k), 
subtract: n - m, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
select: L[n], 
cons: [a / b], 
eq_int: (i =z j)
Lemmas referenced : 
member-less_than, 
length_of_cons_lemma, 
length_of_nil_lemma, 
ifthenelse_wf, 
eq_int_wf, 
int_seg_wf, 
increasing_wf, 
istype-void, 
istype-le, 
select_wf, 
cons_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
nil_wf, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-less_than, 
length_wf_nat, 
nat_properties, 
list_wf, 
istype-universe, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
decidable__equal_int, 
int_subtype_base, 
int_seg_subtype_special, 
int_seg_cases
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
productElimination, 
imageElimination, 
universeIsType, 
natural_numberEquality, 
productIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
voidElimination, 
functionExtensionality, 
applyEquality, 
because_Cache, 
functionIsType, 
equalityIstype, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
addEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
inhabitedIsType, 
instantiate, 
universeEquality, 
equalityElimination, 
promote_hyp, 
cumulativity, 
intEquality, 
hypothesis_subsumption
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i,j:\mBbbN{}||L||.    [L[i];  L[j]]  \msubseteq{}  L  supposing  i  <  j
Date html generated:
2020_05_19-PM-09_42_10
Last ObjectModification:
2020_01_04-PM-08_26_15
Theory : list_1
Home
Index