Nuprl Lemma : sublist_pair

[T:Type]. ∀L:T List. ∀i,j:ℕ||L||.  [L[i]; L[j]] ⊆ supposing i < j


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 select: L[n] length: ||as|| cons: [a b] nil: [] list: List int_seg: {i..j-} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T int_seg: {i..j-} sublist: L1 ⊆ L2 exists: x:A. B[x] lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T nat: less_than': less_than'(a;b) not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  guard: {T} increasing: increasing(f;k) subtract: m bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  select: L[n] cons: [a b] eq_int: (i =z j)
Lemmas referenced :  member-less_than length_of_cons_lemma length_of_nil_lemma ifthenelse_wf eq_int_wf int_seg_wf increasing_wf istype-void istype-le select_wf cons_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt length_wf intformless_wf int_formula_prop_less_lemma nil_wf non_neg_length itermAdd_wf int_term_value_add_lemma istype-less_than length_wf_nat nat_properties list_wf istype-universe eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__equal_int int_subtype_base int_seg_subtype_special int_seg_cases
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_isectElimination sqequalRule dependent_functionElimination Error :memTop,  dependent_pairFormation_alt lambdaEquality_alt productElimination imageElimination universeIsType natural_numberEquality productIsType dependent_set_memberEquality_alt independent_pairFormation voidElimination functionExtensionality applyEquality because_Cache functionIsType equalityIstype unionElimination approximateComputation independent_functionElimination int_eqEquality addEquality equalityTransitivity equalitySymmetry applyLambdaEquality inhabitedIsType instantiate universeEquality equalityElimination promote_hyp cumulativity intEquality hypothesis_subsumption

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i,j:\mBbbN{}||L||.    [L[i];  L[j]]  \msubseteq{}  L  supposing  i  <  j



Date html generated: 2020_05_19-PM-09_42_10
Last ObjectModification: 2020_01_04-PM-08_26_15

Theory : list_1


Home Index