Nuprl Lemma : sublist_pair
∀[T:Type]. ∀L:T List. ∀i,j:ℕ||L||.  [L[i]; L[j]] ⊆ L supposing i < j
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
select: L[n]
, 
length: ||as||
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
sublist: L1 ⊆ L2
, 
exists: ∃x:A. B[x]
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
guard: {T}
, 
increasing: increasing(f;k)
, 
subtract: n - m
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
select: L[n]
, 
cons: [a / b]
, 
eq_int: (i =z j)
Lemmas referenced : 
member-less_than, 
length_of_cons_lemma, 
length_of_nil_lemma, 
ifthenelse_wf, 
eq_int_wf, 
int_seg_wf, 
increasing_wf, 
istype-void, 
istype-le, 
select_wf, 
cons_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
nil_wf, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-less_than, 
length_wf_nat, 
nat_properties, 
list_wf, 
istype-universe, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
decidable__equal_int, 
int_subtype_base, 
int_seg_subtype_special, 
int_seg_cases
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
productElimination, 
imageElimination, 
universeIsType, 
natural_numberEquality, 
productIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
voidElimination, 
functionExtensionality, 
applyEquality, 
because_Cache, 
functionIsType, 
equalityIstype, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
addEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
inhabitedIsType, 
instantiate, 
universeEquality, 
equalityElimination, 
promote_hyp, 
cumulativity, 
intEquality, 
hypothesis_subsumption
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i,j:\mBbbN{}||L||.    [L[i];  L[j]]  \msubseteq{}  L  supposing  i  <  j
Date html generated:
2020_05_19-PM-09_42_10
Last ObjectModification:
2020_01_04-PM-08_26_15
Theory : list_1
Home
Index