Nuprl Lemma : l_before_transitivity
∀[T:Type]. ∀l:T List. ∀x,y,z:T.  x before y ∈ l 
⇒ y before z ∈ l 
⇒ x before z ∈ l supposing no_repeats(T;l)
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
no_repeats: no_repeats(T;l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
l_before: x before y ∈ l
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
no_repeats_witness, 
sublist_wf, 
cons_wf, 
nil_wf, 
no_repeats_wf, 
list_wf, 
sublist_transitivity, 
cons_sublist_cons, 
sublist_weakening, 
append_overlapping_sublists, 
list_ind_cons_lemma, 
istype-void, 
list_ind_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
Error :universeIsType, 
Error :inhabitedIsType, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
Error :inrFormation_alt, 
because_Cache, 
independent_isectElimination, 
Error :productIsType, 
Error :equalityIsType1, 
Error :inlFormation_alt, 
independent_pairFormation, 
Error :isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}[T:Type]
    \mforall{}l:T  List.  \mforall{}x,y,z:T.    x  before  y  \mmember{}  l  {}\mRightarrow{}  y  before  z  \mmember{}  l  {}\mRightarrow{}  x  before  z  \mmember{}  l  supposing  no\_repeats(T;l)
Date html generated:
2019_06_20-PM-01_24_05
Last ObjectModification:
2018_09_29-PM-00_02_53
Theory : list_1
Home
Index