Nuprl Lemma : l_before_transitivity

[T:Type]. ∀l:T List. ∀x,y,z:T.  before y ∈  before z ∈  before z ∈ supposing no_repeats(T;l)


Proof




Definitions occuring in Statement :  l_before: before y ∈ l no_repeats: no_repeats(T;l) list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  l_before: before y ∈ l uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} or: P ∨ Q cand: c∧ B append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  no_repeats_witness sublist_wf cons_wf nil_wf no_repeats_wf list_wf sublist_transitivity cons_sublist_cons sublist_weakening append_overlapping_sublists list_ind_cons_lemma istype-void list_ind_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename Error :universeIsType,  Error :inhabitedIsType,  universeEquality dependent_functionElimination productElimination Error :inrFormation_alt,  because_Cache independent_isectElimination Error :productIsType,  Error :equalityIsType1,  Error :inlFormation_alt,  independent_pairFormation Error :isect_memberEquality_alt,  voidElimination

Latex:
\mforall{}[T:Type]
    \mforall{}l:T  List.  \mforall{}x,y,z:T.    x  before  y  \mmember{}  l  {}\mRightarrow{}  y  before  z  \mmember{}  l  {}\mRightarrow{}  x  before  z  \mmember{}  l  supposing  no\_repeats(T;l)



Date html generated: 2019_06_20-PM-01_24_05
Last ObjectModification: 2018_09_29-PM-00_02_53

Theory : list_1


Home Index