Nuprl Lemma : append_overlapping_sublists

[T:Type]. ∀L1,L2,L:T List. ∀x:T.  L1 [x] ⊆  [x L2] ⊆  L1 [x L2] ⊆ supposing no_repeats(T;L)


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 no_repeats: no_repeats(T;l) append: as bs cons: [a b] nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q sublist: L1 ⊆ L2 no_repeats: no_repeats(T;l) exists: x:A. B[x] and: P ∧ Q prop: top: Top ge: i ≥  le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B subtype_rel: A ⊆B nat: increasing: increasing(f;k) less_than: a < b squash: T subtract: m true: True so_apply: x[s] so_lambda: λ2x.t[x] cons: [a b] select: L[n]
Lemmas referenced :  no_repeats_witness length_of_cons_lemma sublist_wf cons_wf append_wf nil_wf no_repeats_wf list_wf istype-universe length_wf istype-void length-append length_of_nil_lemma istype-false le_int_wf eqtt_to_assert assert_of_le_int decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-le istype-less_than eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf le_wf subtract_wf int_seg_properties decidable__le add-is-int-iff itermSubtract_wf int_term_value_subtract_lemma false_wf intformeq_wf int_formula_prop_eq_lemma int_seg_wf increasing_wf length_wf_nat select_wf length_cons non_neg_length length_append subtype_rel_list top_wf nat_properties add-associates minus-one-mul add-swap add-commutes less_than_wf squash_wf true_wf lelt_wf decidable__equal_int int_subtype_base increasing_implies nat_wf set_subtype_base equal_wf not_wf iff_weakening_equal subtype_rel_self select_append_back add-subtract-cancel length_nil product_subtype_list list-cases bnot_wf lt_int_wf equal-wf-T-base uiff_transitivity assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int add-mul-special zero-mul select-cons-hd select_append_front
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename sqequalRule dependent_functionElimination Error :memTop,  productElimination universeIsType inhabitedIsType instantiate universeEquality natural_numberEquality addEquality voidElimination isect_memberEquality_alt independent_pairFormation dependent_pairFormation_alt lambdaEquality_alt setElimination because_Cache unionElimination equalityElimination independent_isectElimination applyEquality dependent_set_memberEquality_alt approximateComputation int_eqEquality productIsType equalityTransitivity equalitySymmetry equalityIstype promote_hyp cumulativity pointwiseFunctionality baseApply closedConclusion baseClosed functionExtensionality functionIsType applyLambdaEquality imageElimination multiplyEquality minusEquality hyp_replacement imageMemberEquality equalityIsType1 intEquality voidEquality hypothesis_subsumption

Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2,L:T  List.  \mforall{}x:T.
        L1  @  [x]  \msubseteq{}  L  {}\mRightarrow{}  [x  /  L2]  \msubseteq{}  L  {}\mRightarrow{}  L1  @  [x  /  L2]  \msubseteq{}  L  supposing  no\_repeats(T;L)



Date html generated: 2020_05_19-PM-09_42_19
Last ObjectModification: 2020_02_06-PM-09_36_44

Theory : list_1


Home Index