Nuprl Lemma : l_member!_wf

[T:Type]. ∀[l:T List]. ∀[x:T].  ((x ∈l) ∈ ℙ)


Proof




Definitions occuring in Statement :  l_member!: (x ∈l) list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_member!: (x ∈l) so_lambda: λ2x.t[x] prop: cand: c∧ B nat: and: P ∧ Q uimplies: supposing a ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top so_apply: x[s]
Lemmas referenced :  exists_wf nat_wf less_than_wf length_wf equal_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf all_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality productEquality setElimination rename because_Cache cumulativity hypothesisEquality independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[x:T].    ((x  \mmember{}!  l)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_17-AM-07_27_18
Last ObjectModification: 2017_02_27-PM-04_05_48

Theory : list_1


Home Index