Nuprl Lemma : list-equal-set

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[L,L':T List].  (L L' ∈ ({x:T| P[x]}  List)) supposing ((L L' ∈ (T List)) and (∀x∈L.P[x]))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) list: List uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop:
Lemmas referenced :  strong-subtype-equal-lists strong-subtype-set3 strong-subtype-self list-set-type2 equal_wf list_wf l_all_wf l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality applyEquality hypothesis because_Cache sqequalRule independent_isectElimination lambdaEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry setElimination rename functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[L,L':T  List].    (L  =  L')  supposing  ((L  =  L')  and  (\mforall{}x\mmember{}L.P[x]))



Date html generated: 2016_05_14-AM-07_49_11
Last ObjectModification: 2015_12_26-PM-04_45_05

Theory : list_1


Home Index