Nuprl Lemma : list-equal-set
∀[T:Type]. ∀[P:T ⟶ ℙ]. ∀[L,L':T List].  (L = L' ∈ ({x:T| P[x]}  List)) supposing ((L = L' ∈ (T List)) and (∀x∈L.P[x]))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
Lemmas referenced : 
strong-subtype-equal-lists, 
strong-subtype-set3, 
strong-subtype-self, 
list-set-type2, 
equal_wf, 
list_wf, 
l_all_wf, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[L,L':T  List].    (L  =  L')  supposing  ((L  =  L')  and  (\mforall{}x\mmember{}L.P[x]))
Date html generated:
2016_05_14-AM-07_49_11
Last ObjectModification:
2015_12_26-PM-04_45_05
Theory : list_1
Home
Index