Step
*
2
1
of Lemma
list_decomp_last
1. [T] : Type
2. u : T
3. v : T List
4. 0 < ||v|| + 1
5. ¬(||v|| = 0 ∈ ℤ)
6. L' : T List
7. v = (L' @ [last(v)]) ∈ (T List)
⊢ ∃L':T List. ([u / v] = (L' @ [last(v)]) ∈ (T List))
BY
{ (InstConcl [⌜[u / L']⌝]⋅
THEN Reduce 0
THEN Auto
THEN ParallelOp -4
THEN RWO "assert_of_null" (-1)
THEN Auto
THEN HypSubst' (-1) 0
THEN Reduce 0
THEN Auto) }
Latex:
Latex:
1. [T] : Type
2. u : T
3. v : T List
4. 0 < ||v|| + 1
5. \mneg{}(||v|| = 0)
6. L' : T List
7. v = (L' @ [last(v)])
\mvdash{} \mexists{}L':T List. ([u / v] = (L' @ [last(v)]))
By
Latex:
(InstConcl [\mkleeneopen{}[u / L']\mkleeneclose{}]\mcdot{}
THEN Reduce 0
THEN Auto
THEN ParallelOp -4
THEN RWO "assert\_of\_null" (-1)
THEN Auto
THEN HypSubst' (-1) 0
THEN Reduce 0
THEN Auto)
Home
Index