Nuprl Lemma : list_match-aux-nil
∀[bs:Top List]. ∀[used,R:Top].  list-match-aux([];bs;used;a,b.R[a;b])
Proof
Definitions occuring in Statement : 
list-match-aux: list-match-aux(L1;L2;used;a,b.R[a; b])
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
list-match-aux: list-match-aux(L1;L2;used;a,b.R[a; b])
, 
sq_exists: ∃x:A [B[x]]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cand: A c∧ B
, 
inject: Inj(A;B;f)
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
length_of_nil_lemma, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
length_wf, 
top_wf, 
int_seg_wf, 
stuck-spread, 
base_wf, 
int_seg_properties, 
decidable__equal_int, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
equal_wf, 
inject_wf, 
all_wf, 
not_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
dependent_set_memberFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
productElimination, 
independent_pairFormation, 
isectElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
baseClosed, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination, 
productEquality, 
functionExtensionality, 
applyEquality
Latex:
\mforall{}[bs:Top  List].  \mforall{}[used,R:Top].    list-match-aux([];bs;used;a,b.R[a;b])
Date html generated:
2018_05_21-PM-00_46_41
Last ObjectModification:
2018_05_19-AM-06_49_49
Theory : list_1
Home
Index