Nuprl Lemma : lsum-append

[T:Type]. ∀[L1,L2:T List]. ∀[f:{x:T| (x ∈ L1 L2)}  ⟶ ℤ].
  (f[x] x ∈ L1 L2) (f[x] x ∈ L1) + Σ(f[x] x ∈ L2)) ∈ ℤ)


Proof




Definitions occuring in Statement :  lsum: Σ(f[x] x ∈ L) l_member: (x ∈ l) append: as bs list: List uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lsum: Σ(f[x] x ∈ L) top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q guard: {T}
Lemmas referenced :  map_append_sq istype-void l_member_wf append_wf istype-int list_wf istype-universe list-subtype subtype_rel_list_set member_append l_sum-append map_wf l_sum_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality_alt voidElimination hypothesis functionIsType setIsType universeIsType hypothesisEquality axiomEquality isectIsTypeImplies inhabitedIsType instantiate universeEquality applyEquality because_Cache lambdaEquality_alt independent_isectElimination setElimination rename lambdaFormation_alt dependent_functionElimination productElimination independent_functionElimination inlFormation_alt inrFormation_alt setEquality intEquality addEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L1  @  L2)\}    {}\mrightarrow{}  \mBbbZ{}].
    (\mSigma{}(f[x]  |  x  \mmember{}  L1  @  L2)  =  (\mSigma{}(f[x]  |  x  \mmember{}  L1)  +  \mSigma{}(f[x]  |  x  \mmember{}  L2)))



Date html generated: 2020_05_19-PM-09_47_13
Last ObjectModification: 2019_11_27-AM-10_05_52

Theory : list_1


Home Index