Nuprl Lemma : lsum-append
∀[T:Type]. ∀[L1,L2:T List]. ∀[f:{x:T| (x ∈ L1 @ L2)}  ⟶ ℤ].
  (Σ(f[x] | x ∈ L1 @ L2) = (Σ(f[x] | x ∈ L1) + Σ(f[x] | x ∈ L2)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
lsum: Σ(f[x] | x ∈ L)
, 
l_member: (x ∈ l)
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lsum: Σ(f[x] | x ∈ L)
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
map_append_sq, 
istype-void, 
l_member_wf, 
append_wf, 
istype-int, 
list_wf, 
istype-universe, 
list-subtype, 
subtype_rel_list_set, 
member_append, 
l_sum-append, 
map_wf, 
l_sum_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
functionIsType, 
setIsType, 
universeIsType, 
hypothesisEquality, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality, 
applyEquality, 
because_Cache, 
lambdaEquality_alt, 
independent_isectElimination, 
setElimination, 
rename, 
lambdaFormation_alt, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
inlFormation_alt, 
inrFormation_alt, 
setEquality, 
intEquality, 
addEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L1  @  L2)\}    {}\mrightarrow{}  \mBbbZ{}].
    (\mSigma{}(f[x]  |  x  \mmember{}  L1  @  L2)  =  (\mSigma{}(f[x]  |  x  \mmember{}  L1)  +  \mSigma{}(f[x]  |  x  \mmember{}  L2)))
Date html generated:
2020_05_19-PM-09_47_13
Last ObjectModification:
2019_11_27-AM-10_05_52
Theory : list_1
Home
Index