Nuprl Lemma : l_sum-append

[L1,L2:ℤ List].  (l_sum(L1 L2) l_sum(L1) l_sum(L2))


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) append: as bs list: List uall: [x:A]. B[x] add: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q l_sum: l_sum(L) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] decidable: Dec(P) sq_type: SQType(T) cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b squash: T less_than': less_than'(a;b)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list_wf equal-wf-base nat_wf list_subtype_base int_subtype_base less_than_transitivity1 less_than_irreflexivity list-cases subtype_base_sq reduce_nil_lemma list_ind_nil_lemma decidable__equal_int l_sum_wf intformnot_wf intformeq_wf itermAdd_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma product_subtype_list spread_cons_lemma colength_wf_list equal-wf-T-base decidable__le le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma set_subtype_base reduce_cons_lemma list_ind_cons_lemma add-associates
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom baseApply closedConclusion baseClosed applyEquality because_Cache unionElimination instantiate cumulativity equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality imageElimination

Latex:
\mforall{}[L1,L2:\mBbbZ{}  List].    (l\_sum(L1  @  L2)  \msim{}  l\_sum(L1)  +  l\_sum(L2))



Date html generated: 2017_04_17-AM-08_39_44
Last ObjectModification: 2017_02_27-PM-04_57_42

Theory : list_1


Home Index