Nuprl Lemma : no_repeats_map

[T:Type]. ∀[L:T List].  ∀[A:Type]. ∀[f:{x:T| (x ∈ L)}  ⟶ A].  no_repeats(A;map(f;L)) supposing Inj({x:T| (x ∈ L)} ;A;f\000C) supposing no_repeats(T;L)


Proof




Definitions occuring in Statement :  no_repeats: no_repeats(T;l) l_member: (x ∈ l) map: map(f;as) list: List inject: Inj(A;B;f) uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  mapl: mapl(f;l) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] all: x:A. B[x] top: Top subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} or: P ∨ Q uiff: uiff(P;Q) cand: c∧ B inject: Inj(A;B;f) squash: T not: ¬A exists: x:A. B[x] false: False
Lemmas referenced :  list_induction no_repeats_wf all_wf l_member_wf inject_wf mapl_wf list_wf map_nil_lemma no_repeats_nil nil_wf map_cons_lemma no_repeats_cons subtype_rel_dep_function cons_wf subtype_rel_sets cons_member equal_wf set_wf no_repeats_witness member_wf member-mapl and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality lambdaEquality functionEquality cumulativity hypothesis setEquality functionExtensionality applyEquality independent_functionElimination lambdaFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality rename independent_isectElimination because_Cache setElimination productElimination inrFormation inlFormation dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry universeEquality hyp_replacement Error :applyLambdaEquality,  imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].
    \mforall{}[A:Type].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  A].    no\_repeats(A;map(f;L))  supposing  Inj(\{x:T|  (x  \mmember{}  L)\}  ;A;f)  s\000Cupposing  no\_repeats(T;L)



Date html generated: 2016_10_21-AM-10_30_08
Last ObjectModification: 2016_07_12-AM-05_43_24

Theory : list_1


Home Index