Nuprl Lemma : no_repeats_upto
∀[n:ℕ]. (no_repeats(ℤ;upto(n)) ∧ no_repeats(ℕn;upto(n)))
Proof
Definitions occuring in Statement : 
upto: upto(n)
, 
no_repeats: no_repeats(T;l)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
upto: upto(n)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
implies: P 
⇒ Q
Lemmas referenced : 
no_repeats_from-upto, 
no_repeats-subtype, 
int_seg_wf, 
upto_wf, 
no_repeats_witness, 
subtype_rel_list, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
intEquality, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
applyEquality, 
independent_functionElimination
Latex:
\mforall{}[n:\mBbbN{}].  (no\_repeats(\mBbbZ{};upto(n))  \mwedge{}  no\_repeats(\mBbbN{}n;upto(n)))
Date html generated:
2016_05_14-PM-02_05_05
Last ObjectModification:
2015_12_26-PM-05_09_14
Theory : list_1
Home
Index