Nuprl Lemma : no_repeats_from-upto

[n1,n2:ℤ].  no_repeats(ℤ;[n1, n2))


Proof




Definitions occuring in Statement :  from-upto: [n, m) no_repeats: no_repeats(T;l) uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T no_repeats: no_repeats(T;l) uimplies: supposing a not: ¬A implies:  Q false: False prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff
Lemmas referenced :  length-from-upto equal_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf le_wf less_than_wf not_wf nat_wf length_wf from-upto_wf no_repeats_witness subtype_rel_list lt_int_wf lelt_wf subtract_wf intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__equal_int equal-wf-base int_subtype_base assert_wf bnot_wf intformless_wf int_formula_prop_less_lemma bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot select-from-upto
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution sqequalRule extract_by_obid isectElimination hypothesisEquality hypothesis because_Cache independent_functionElimination voidElimination independent_isectElimination setElimination rename dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll applyEquality setEquality productEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality productElimination instantiate cumulativity impliesFunctionality

Latex:
\mforall{}[n1,n2:\mBbbZ{}].    no\_repeats(\mBbbZ{};[n1,  n2))



Date html generated: 2017_04_17-AM-07_55_50
Last ObjectModification: 2017_02_27-PM-04_28_32

Theory : list_1


Home Index