Nuprl Lemma : not-l_all-dec
∀[T:Type]. ∀L:T List. ∀P:T ⟶ ℙ.  ((∀x:T. Dec(P[x])) ⇒ (¬(∀x∈L.P[x]) ⇐⇒ (∃x∈L. ¬P[x])))
Proof
Definitions occuring in Statement : 
l_exists: (∃x∈L. P[x]), 
l_all: (∀x∈L.P[x]), 
list: T List, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
not: ¬A, 
false: False, 
decidable: Dec(P), 
or: P ∨ Q, 
exists: ∃x:A. B[x]
Lemmas referenced : 
not_wf, 
l_all_wf, 
l_member_wf, 
l_exists_wf, 
all_wf, 
decidable_wf, 
list_wf, 
not-l_exists, 
l_all_iff, 
decidable__l_exists, 
decidable__not, 
l_exists_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
unionElimination
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  (\mneg{}(\mforall{}x\mmember{}L.P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  \mneg{}P[x])))
Date html generated:
2016_05_14-AM-07_48_07
Last ObjectModification:
2015_12_26-PM-02_55_35
Theory : list_1
Home
Index