Nuprl Lemma : null-length-zero

[L:Top List]. null(L) (||L|| =z 0)


Proof




Definitions occuring in Statement :  length: ||as|| null: null(as) list: List eq_int: (i =z j) bool: 𝔹 uall: [x:A]. B[x] top: Top natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q eq_int: (i =z j) cons: [a b] top: Top squash: T prop: uimplies: supposing a ge: i ≥  nequal: a ≠ b ∈  not: ¬A implies:  Q le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  top_wf list-cases null_nil_lemma length_of_nil_lemma btrue_wf product_subtype_list null_cons_lemma length_of_cons_lemma equal_wf squash_wf true_wf bool_wf bfalse_wf eq_int_eq_false length_wf non_neg_length satisfiable-full-omega-tt intformand_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf equal-wf-T-base iff_weakening_equal list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality unionElimination sqequalRule promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality addEquality natural_numberEquality independent_isectElimination lambdaFormation dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll baseClosed imageMemberEquality independent_functionElimination because_Cache

Latex:
\mforall{}[L:Top  List].  null(L)  =  (||L||  =\msubz{}  0)



Date html generated: 2017_04_17-AM-07_36_17
Last ObjectModification: 2017_02_27-PM-04_10_17

Theory : list_1


Home Index