Nuprl Lemma : pairwise-map

[T,T2:Type].
  ∀L:T List. ∀[P:T2 ⟶ T2 ⟶ ℙ']. ∀[f:{x:T| (x ∈ L)}  ⟶ T2].  ((∀x,y∈map(f;L).  P[x;y]) ⇐⇒ (∀x,y∈L.  P[f x;f y]))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) l_member: (x ∈ l) map: map(f;as) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T prop: implies:  Q iff: ⇐⇒ Q and: P ∧ Q pairwise: (∀x,y∈L.  P[x; y]) top: Top int_seg: {i..j-} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a lelt: i ≤ j < k guard: {T} decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A le: A ≤ B
Lemmas referenced :  list-subtype list_wf l_member_wf length-map int_seg_wf length_wf pairwise_wf2 map_wf equal_wf set_wf subtype_rel_list top_wf int_seg_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf select-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality equalityTransitivity hypothesis equalitySymmetry setEquality independent_pairFormation sqequalRule isect_memberEquality voidElimination voidEquality dependent_functionElimination because_Cache setElimination rename natural_numberEquality instantiate functionExtensionality applyEquality lambdaEquality dependent_set_memberEquality independent_functionElimination functionEquality universeEquality independent_isectElimination productElimination unionElimination imageElimination dependent_pairFormation int_eqEquality intEquality computeAll

Latex:
\mforall{}[T,T2:Type].
    \mforall{}L:T  List
        \mforall{}[P:T2  {}\mrightarrow{}  T2  {}\mrightarrow{}  \mBbbP{}'].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  T2].
            ((\mforall{}x,y\mmember{}map(f;L).    P[x;y])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x,y\mmember{}L.    P[f  x;f  y]))



Date html generated: 2017_04_17-AM-07_44_23
Last ObjectModification: 2017_02_27-PM-04_16_07

Theory : list_1


Home Index