Nuprl Lemma : permutation-singleton
∀[T:Type]. ∀[x:T]. ∀[ts:T List].  ts = [x] ∈ (T List) supposing permutation(T;[x];ts)
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
top: Top
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
true: True
, 
false: False
, 
cons: [a / b]
, 
squash: ↓T
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
prop: ℙ
, 
permutation: permutation(T;L1;L2)
, 
permute_list: (L o f)
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
less_than: a < b
, 
select: L[n]
Lemmas referenced : 
top_wf, 
length_cons_ge_one, 
length_wf, 
ge_wf, 
squash_wf, 
hd_wf, 
reduce_hd_cons_lemma, 
decidable__equal_int, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_not_lemma, 
intformnot_wf, 
lelt_wf, 
int_seg_properties, 
decidable__le, 
set_subtype_base, 
mklist-single, 
list_wf, 
permutation_wf, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
non_neg_length, 
product_subtype_list, 
int_subtype_base, 
subtype_base_sq, 
length_of_nil_lemma, 
length_of_cons_lemma, 
list-cases, 
nil_wf, 
cons_wf, 
permutation-length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
rename, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality, 
universeEquality, 
setElimination, 
setEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[ts:T  List].    ts  =  [x]  supposing  permutation(T;[x];ts)
Date html generated:
2016_05_14-PM-02_32_49
Last ObjectModification:
2016_01_15-AM-07_45_43
Theory : list_1
Home
Index