Nuprl Lemma : permutation-singleton

[T:Type]. ∀[x:T]. ∀[ts:T List].  ts [x] ∈ (T List) supposing permutation(T;[x];ts)


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) cons: [a b] nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q top: Top sq_type: SQType(T) implies:  Q guard: {T} true: True false: False cons: [a b] squash: T ge: i ≥  le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A prop: permutation: permutation(T;L1;L2) permute_list: (L f) int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] lelt: i ≤ j < k decidable: Dec(P) less_than: a < b select: L[n]
Lemmas referenced :  top_wf length_cons_ge_one length_wf ge_wf squash_wf hd_wf reduce_hd_cons_lemma decidable__equal_int int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_not_lemma intformnot_wf lelt_wf int_seg_properties decidable__le set_subtype_base mklist-single list_wf permutation_wf int_formula_prop_wf int_term_value_add_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma itermAdd_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt non_neg_length product_subtype_list int_subtype_base subtype_base_sq length_of_nil_lemma length_of_cons_lemma list-cases nil_wf cons_wf permutation-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination unionElimination sqequalRule isect_memberEquality voidElimination voidEquality instantiate cumulativity intEquality equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality promote_hyp hypothesis_subsumption productElimination applyEquality lambdaEquality imageElimination imageMemberEquality baseClosed rename dependent_pairFormation int_eqEquality independent_pairFormation computeAll axiomEquality universeEquality setElimination setEquality dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[ts:T  List].    ts  =  [x]  supposing  permutation(T;[x];ts)



Date html generated: 2016_05_14-PM-02_32_49
Last ObjectModification: 2016_01_15-AM-07_45_43

Theory : list_1


Home Index