Nuprl Lemma : poly-int-val_wf2
∀[n:ℕ]. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ]. ∀[p:polynom(n)].  (p@l ∈ ℤ)
Proof
Definitions occuring in Statement : 
poly-int-val: p@l
, 
polynom: polynom(n)
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_wf, 
list_wf, 
set_wf, 
polynom_wf, 
polynom_subtype_polyform, 
int_subtype_base, 
list_subtype_base, 
equal-wf-base-T, 
poly-int-val_wf
Rules used in proof : 
lambdaEquality, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
sqequalRule, 
intEquality, 
hypothesis, 
dependent_set_memberEquality, 
rename, 
setElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[p:polynom(n)].    (p@l  \mmember{}  \mBbbZ{})
Date html generated:
2017_04_17-AM-09_04_51
Last ObjectModification:
2017_04_13-PM-01_21_36
Theory : list_1
Home
Index