Nuprl Lemma : poly-int-val_wf2

[n:ℕ]. ∀[l:{l:ℤ List| ||l|| n ∈ ℤ]. ∀[p:polynom(n)].  (p@l ∈ ℤ)


Proof




Definitions occuring in Statement :  poly-int-val: p@l polynom: polynom(n) length: ||as|| list: List nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] nat: so_lambda: λ2x.t[x] prop: uimplies: supposing a subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf list_wf set_wf polynom_wf polynom_subtype_polyform int_subtype_base list_subtype_base equal-wf-base-T poly-int-val_wf
Rules used in proof :  lambdaEquality because_Cache isect_memberEquality axiomEquality equalitySymmetry equalityTransitivity independent_isectElimination applyEquality baseClosed closedConclusion baseApply sqequalRule intEquality hypothesis dependent_set_memberEquality rename setElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[p:polynom(n)].    (p@l  \mmember{}  \mBbbZ{})



Date html generated: 2017_04_17-AM-09_04_51
Last ObjectModification: 2017_04_13-PM-01_21_36

Theory : list_1


Home Index