Nuprl Lemma : pos_length2

[A:Type]. ∀[l:A List].  uiff(¬↑null(l);0 < ||l||)


Proof




Definitions occuring in Statement :  length: ||as|| null: null(as) list: List assert: b less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt not: ¬A implies:  Q true: True false: False cons: [a b] top: Top bfalse: ff guard: {T} nat: le: A ≤ B decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) less_than: a < b squash: T
Lemmas referenced :  list-cases length_of_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma istype-void null_cons_lemma length_wf_nat decidable__lt istype-false not-lt-2 condition-implies-le minus-add istype-int minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel istype-assert null_wf istype-less_than length_wf member-less_than list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation hypothesis hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination unionElimination sqequalRule independent_functionElimination natural_numberEquality voidElimination promote_hyp hypothesis_subsumption productElimination Error :isect_memberEquality_alt,  Error :inhabitedIsType,  Error :lambdaFormation_alt,  setElimination rename addEquality independent_isectElimination applyEquality Error :lambdaEquality_alt,  because_Cache minusEquality Error :equalityIstype,  equalityTransitivity equalitySymmetry Error :functionIsType,  imageElimination Error :functionIsTypeImplies,  independent_pairEquality Error :isectIsTypeImplies,  Error :universeIsType,  instantiate universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    uiff(\mneg{}\muparrow{}null(l);0  <  ||l||)



Date html generated: 2019_06_20-PM-01_19_55
Last ObjectModification: 2019_01_15-PM-02_20_14

Theory : list_1


Home Index