Nuprl Lemma : remove-nth_wf

[T:Type]. ∀[L:T List]. ∀[n:ℕ||L||].  (remove-nth(n;L) ∈ T × (T List))


Proof




Definitions occuring in Statement :  remove-nth: remove-nth(n;L) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T remove-nth: remove-nth(n;L) int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T
Lemmas referenced :  list_wf int_seg_wf nth_tl_wf firstn_wf append_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties select_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule independent_pairEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality setElimination rename hypothesis independent_isectElimination natural_numberEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache imageElimination addEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[n:\mBbbN{}||L||].    (remove-nth(n;L)  \mmember{}  T  \mtimes{}  (T  List))



Date html generated: 2016_05_14-PM-01_54_53
Last ObjectModification: 2016_01_15-AM-08_14_08

Theory : list_1


Home Index