Nuprl Lemma : select_equal
∀[T:Type]. ∀[a,b:T List]. ∀[i:ℕ].  (a[i] = b[i] ∈ T) supposing (i < ||a|| and (a = b ∈ (T List)))
Proof
Definitions occuring in Statement : 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
Lemmas referenced : 
less_than_wf, 
length_wf, 
equal_wf, 
list_wf, 
nat_wf, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
cumulativity, 
because_Cache, 
universeEquality, 
isect_memberFormation, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
lambdaFormation, 
independent_isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
functionEquality, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[a,b:T  List].  \mforall{}[i:\mBbbN{}].    (a[i]  =  b[i])  supposing  (i  <  ||a||  and  (a  =  b))
Date html generated:
2017_04_17-AM-08_42_56
Last ObjectModification:
2017_02_27-PM-05_01_50
Theory : list_1
Home
Index