Nuprl Lemma : sorted-by-no_repeats

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀[L:T List]. no_repeats(T;L) supposing sorted-by(R;L) supposing ∀x:T. (R x))


Proof




Definitions occuring in Statement :  sorted-by: sorted-by(R;L) no_repeats: no_repeats(T;l) list: List uimplies: supposing a uall: [x:A]. B[x] prop: all: x:A. B[x] not: ¬A apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sorted-by: sorted-by(R;L) no_repeats: no_repeats(T;l) not: ¬A implies:  Q false: False all: x:A. B[x] decidable: Dec(P) or: P ∨ Q prop: nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B
Lemmas referenced :  decidable__lt equal_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf not_wf nat_wf less_than_wf length_wf no_repeats_witness sorted-by_wf subtype_rel_dep_function l_member_wf subtype_rel_self set_wf list_wf all_wf lelt_wf intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma decidable__equal_int le_wf equal-wf-base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation thin extract_by_obid dependent_functionElimination because_Cache hypothesis unionElimination independent_functionElimination voidElimination isectElimination setElimination rename independent_isectElimination hypothesisEquality natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality sqequalRule independent_pairFormation computeAll equalityTransitivity equalitySymmetry cumulativity applyEquality instantiate functionEquality universeEquality setEquality functionExtensionality hyp_replacement applyLambdaEquality dependent_set_memberEquality productElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[L:T  List].  no\_repeats(T;L)  supposing  sorted-by(R;L)  supposing  \mforall{}x:T.  (\mneg{}(R  x  x))



Date html generated: 2017_04_17-AM-08_42_09
Last ObjectModification: 2017_02_27-PM-05_00_36

Theory : list_1


Home Index