Nuprl Lemma : whole_segment

T:Type. ∀as:T List.  ((as[0..||as||-]) as ∈ (T List))


Proof




Definitions occuring in Statement :  segment: as[m..n-] length: ||as|| list: List all: x:A. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  segment: as[m..n-] all: x:A. B[x] nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff btrue: tt uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: sq_type: SQType(T) guard: {T} subtype_rel: A ⊆B
Lemmas referenced :  subtype_base_sq int_subtype_base decidable__equal_int length_wf full-omega-unsat intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf firstn_all subtype_rel_list top_wf decidable__le intformle_wf int_formula_prop_le_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination because_Cache unionElimination hypothesisEquality natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry applyEquality universeEquality

Latex:
\mforall{}T:Type.  \mforall{}as:T  List.    ((as[0..||as||\msupminus{}])  =  as)



Date html generated: 2017_09_29-PM-05_58_11
Last ObjectModification: 2017_07_12-AM-11_48_18

Theory : list_1


Home Index