Nuprl Lemma : code-seq1_wf
∀[k:ℕ]. ∀[s:ℕk ⟶ ℕ].  (code-seq1(k;s) ∈ ℕ)
Proof
Definitions occuring in Statement : 
code-seq1: code-seq1(k;s)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
code-seq1: code-seq1(k;s)
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
primrec_wf, 
nat_wf, 
false_wf, 
le_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
int_seg_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
code-pair_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
lambdaEquality, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
applyEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
axiomEquality, 
functionEquality, 
isect_memberEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[s:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}].    (code-seq1(k;s)  \mmember{}  \mBbbN{})
Date html generated:
2019_06_20-PM-02_39_40
Last ObjectModification:
2019_06_12-PM-00_27_45
Theory : num_thy_1
Home
Index