Nuprl Lemma : divides_mul

a,b:ℤ.  ((a b)  (∀n:ℤ((n a) (n b))))


Proof




Definitions occuring in Statement :  divides: a all: x:A. B[x] implies:  Q multiply: m int:
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] divides: a exists: x:A. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top subtype_rel: A ⊆B
Lemmas referenced :  istype-int divides_wf subtype_base_sq int_subtype_base decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermMultiply_wf itermVar_wf int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut Error :universeIsType,  hypothesisEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productElimination Error :dependent_pairFormation_alt,  promote_hyp instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination multiplyEquality unionElimination natural_numberEquality approximateComputation Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination sqequalRule Error :equalityIstype,  baseApply closedConclusion baseClosed applyEquality sqequalBase

Latex:
\mforall{}a,b:\mBbbZ{}.    ((a  |  b)  {}\mRightarrow{}  (\mforall{}n:\mBbbZ{}.  ((n  *  a)  |  (n  *  b))))



Date html generated: 2019_06_20-PM-02_20_18
Last ObjectModification: 2019_01_12-AM-10_36_27

Theory : num_thy_1


Home Index