Nuprl Lemma : fact_unroll_1

[n:ℤ]. (n)! (n 1)! supposing ¬n < 1


Proof




Definitions occuring in Statement :  fact: (n)! less_than: a < b uimplies: supposing a uall: [x:A]. B[x] not: ¬A multiply: m subtract: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  not: ¬A false: False bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  fact_unroll lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache independent_functionElimination voidElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity sqequalAxiom isect_memberEquality intEquality

Latex:
\mforall{}[n:\mBbbZ{}].  (n)!  \msim{}  n  *  (n  -  1)!  supposing  \mneg{}n  <  1



Date html generated: 2018_05_21-PM-01_00_47
Last ObjectModification: 2018_05_19-AM-06_37_34

Theory : num_thy_1


Home Index