Nuprl Lemma : gcd_mul

a,b,n:ℤ.  ((n gcd(a;b)) gcd(n a;n b))


Proof




Definitions occuring in Statement :  assoced: b gcd: gcd(a;b) all: x:A. B[x] multiply: m int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q prop: uall: [x:A]. B[x]
Lemmas referenced :  istype-int gcd_wf gcd_sat_pred gcd_p_wf gcd_p_mul gcd_unique
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :inhabitedIsType,  hypothesisEquality cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin equalitySymmetry hyp_replacement applyLambdaEquality isectElimination multiplyEquality Error :equalityIsType1,  equalityTransitivity independent_functionElimination

Latex:
\mforall{}a,b,n:\mBbbZ{}.    ((n  *  gcd(a;b))  \msim{}  gcd(n  *  a;n  *  b))



Date html generated: 2019_06_20-PM-02_22_30
Last ObjectModification: 2018_10_03-AM-00_12_23

Theory : num_thy_1


Home Index