Nuprl Lemma : gcd_mul
∀a,b,n:ℤ.  ((n * gcd(a;b)) ~ gcd(n * a;n * b))
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
gcd: gcd(a;b)
, 
all: ∀x:A. B[x]
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-int, 
gcd_wf, 
gcd_sat_pred, 
gcd_p_wf, 
gcd_p_mul, 
gcd_unique
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :inhabitedIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
isectElimination, 
multiplyEquality, 
Error :equalityIsType1, 
equalityTransitivity, 
independent_functionElimination
Latex:
\mforall{}a,b,n:\mBbbZ{}.    ((n  *  gcd(a;b))  \msim{}  gcd(n  *  a;n  *  b))
Date html generated:
2019_06_20-PM-02_22_30
Last ObjectModification:
2018_10_03-AM-00_12_23
Theory : num_thy_1
Home
Index