Nuprl Lemma : gcd_p_mul

a,b,y,n:ℤ.  (GCD(a;b;y)  GCD(n a;n b;n y))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) all: x:A. B[x] implies:  Q multiply: m int:
Definitions unfolded in proof :  gcd_p: GCD(a;b;y) all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T uall: [x:A]. B[x] prop: divides: a exists: x:A. B[x] uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q top: Top
Lemmas referenced :  divides_wf gcd_p_wf istype-int divides_mul bezout_ident gcd_unique divides_functionality_wrt_assoced assoced_weakening multiply_functionality_wrt_assoced divisor_of_mul istype-void divisor_of_sum mul-associates mul-swap mul-distributes mul-commutes
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  cut independent_pairFormation hypothesis sqequalHypSubstitution productElimination thin Error :productIsType,  Error :universeIsType,  introduction extract_by_obid isectElimination hypothesisEquality multiplyEquality Error :inhabitedIsType,  dependent_functionElimination independent_functionElimination because_Cache addEquality independent_isectElimination Error :isect_memberEquality_alt,  voidElimination

Latex:
\mforall{}a,b,y,n:\mBbbZ{}.    (GCD(a;b;y)  {}\mRightarrow{}  GCD(n  *  a;n  *  b;n  *  y))



Date html generated: 2019_06_20-PM-02_22_27
Last ObjectModification: 2018_10_03-AM-00_12_26

Theory : num_thy_1


Home Index