Nuprl Lemma : gcd_p_mul
∀a,b,y,n:ℤ.  (GCD(a;b;y) 
⇒ GCD(n * a;n * b;n * y))
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
gcd_p: GCD(a;b;y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
top: Top
Lemmas referenced : 
divides_wf, 
gcd_p_wf, 
istype-int, 
divides_mul, 
bezout_ident, 
gcd_unique, 
divides_functionality_wrt_assoced, 
assoced_weakening, 
multiply_functionality_wrt_assoced, 
divisor_of_mul, 
istype-void, 
divisor_of_sum, 
mul-associates, 
mul-swap, 
mul-distributes, 
mul-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
productElimination, 
thin, 
Error :productIsType, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
multiplyEquality, 
Error :inhabitedIsType, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
addEquality, 
independent_isectElimination, 
Error :isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}a,b,y,n:\mBbbZ{}.    (GCD(a;b;y)  {}\mRightarrow{}  GCD(n  *  a;n  *  b;n  *  y))
Date html generated:
2019_06_20-PM-02_22_27
Last ObjectModification:
2018_10_03-AM-00_12_26
Theory : num_thy_1
Home
Index