Nuprl Lemma : bezout_ident

a,b:ℤ.  ∃u,v:ℤGCD(a;b;(u a) (v b))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) all: x:A. B[x] exists: x:A. B[x] multiply: m add: m int:
Definitions unfolded in proof :  or: P ∨ Q decidable: Dec(P) member: t ∈ T all: x:A. B[x] prop: uall: [x:A]. B[x] nat: and: P ∧ Q top: Top not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a
Lemmas referenced :  decidable__le le_wf bezout_ident_n int_formula_prop_wf int_term_value_var_lemma int_term_value_minus_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermMinus_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt gcd_p_neg_arg gcd_p_wf istype-void minus-one-mul mul-associates mul-commutes minus-minus mul-swap
Rules used in proof :  intEquality unionElimination hypothesis hypothesisEquality natural_numberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution isectElimination dependent_set_memberEquality productElimination computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination minusEquality because_Cache Error :dependent_pairFormation_alt,  addEquality multiplyEquality independent_functionElimination Error :universeIsType,  Error :productIsType,  Error :inhabitedIsType,  Error :isect_memberEquality_alt

Latex:
\mforall{}a,b:\mBbbZ{}.    \mexists{}u,v:\mBbbZ{}.  GCD(a;b;(u  *  a)  +  (v  *  b))



Date html generated: 2019_06_20-PM-02_22_23
Last ObjectModification: 2019_01_13-AM-11_46_17

Theory : num_thy_1


Home Index