Nuprl Lemma : bezout_ident
∀a,b:ℤ.  ∃u,v:ℤ. GCD(a;b;(u * a) + (v * b))
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
multiply: n * m
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
or: P ∨ Q
, 
decidable: Dec(P)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
and: P ∧ Q
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
Lemmas referenced : 
decidable__le, 
le_wf, 
bezout_ident_n, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermMinus_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
gcd_p_neg_arg, 
gcd_p_wf, 
istype-void, 
minus-one-mul, 
mul-associates, 
mul-commutes, 
minus-minus, 
mul-swap
Rules used in proof : 
intEquality, 
unionElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
isectElimination, 
dependent_set_memberEquality, 
productElimination, 
computeAll, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
minusEquality, 
because_Cache, 
Error :dependent_pairFormation_alt, 
addEquality, 
multiplyEquality, 
independent_functionElimination, 
Error :universeIsType, 
Error :productIsType, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt
Latex:
\mforall{}a,b:\mBbbZ{}.    \mexists{}u,v:\mBbbZ{}.  GCD(a;b;(u  *  a)  +  (v  *  b))
Date html generated:
2019_06_20-PM-02_22_23
Last ObjectModification:
2019_01_13-AM-11_46_17
Theory : num_thy_1
Home
Index