Nuprl Lemma : bezout_ident_n

b:ℕ. ∀a:ℤ.  ∃u,v:ℤGCD(a;b;(u a) (v b))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) nat: all: x:A. B[x] exists: x:A. B[x] multiply: m add: m int:
Definitions unfolded in proof :  ge: i ≥  less_than: a < b nat: so_apply: x[s] so_lambda: λ2x.t[x] less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) prop: top: Top not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} guard: {T} member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] subtract: m true: True uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q nat_plus: + squash: T
Lemmas referenced :  int_term_value_add_lemma itermAdd_wf nat_properties nat_wf primrec-wf2 less_than_wf decidable__lt gcd_p_wf exists_wf all_wf le_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma int_formula_prop_not_lemma intformeq_wf itermSubtract_wf intformnot_wf decidable__le lelt_wf set_wf false_wf int_seg_subtype subtract_wf decidable__equal_int int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties add-zero one-mul gcd_p_zero minus-zero minus-add add-commutes condition-implies-le le-add-cancel zero-add add-associates add_functionality_wrt_le not-equal-2 not-lt-2 quot_rem_exists istype-void gcd_p_sym gcd_p_shift mul-commutes mul-distributes mul-distributes-right minus-one-mul mul-swap mul-associates add-swap add-mul-special zero-mul squash_wf true_wf istype-int add_functionality_wrt_eq mul_com subtype_rel_self iff_weakening_equal
Rules used in proof :  multiplyEquality addEquality dependent_set_memberEquality hypothesis_subsumption levelHypothesis equalitySymmetry equalityTransitivity applyEquality addLevel unionElimination computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination productElimination rename setElimination hypothesis hypothesisEquality because_Cache natural_numberEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution Error :dependent_pairFormation_alt,  hyp_replacement applyLambdaEquality Error :universeIsType,  Error :productIsType,  Error :inhabitedIsType,  minusEquality independent_functionElimination Error :isect_memberEquality_alt,  Error :lambdaEquality_alt,  imageElimination imageMemberEquality baseClosed instantiate universeEquality

Latex:
\mforall{}b:\mBbbN{}.  \mforall{}a:\mBbbZ{}.    \mexists{}u,v:\mBbbZ{}.  GCD(a;b;(u  *  a)  +  (v  *  b))



Date html generated: 2019_06_20-PM-02_22_20
Last ObjectModification: 2019_01_11-AM-09_03_44

Theory : num_thy_1


Home Index