Nuprl Lemma : bezout_ident_n
∀b:ℕ. ∀a:ℤ.  ∃u,v:ℤ. GCD(a;b;(u * a) + (v * b))
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
multiply: n * m
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
ge: i ≥ j 
, 
less_than: a < b
, 
nat: ℕ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
prop: ℙ
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
subtract: n - m
, 
true: True
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
nat_plus: ℕ+
, 
squash: ↓T
Lemmas referenced : 
int_term_value_add_lemma, 
itermAdd_wf, 
nat_properties, 
nat_wf, 
primrec-wf2, 
less_than_wf, 
decidable__lt, 
gcd_p_wf, 
exists_wf, 
all_wf, 
le_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
intformeq_wf, 
itermSubtract_wf, 
intformnot_wf, 
decidable__le, 
lelt_wf, 
set_wf, 
false_wf, 
int_seg_subtype, 
subtract_wf, 
decidable__equal_int, 
int_seg_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
add-zero, 
one-mul, 
gcd_p_zero, 
minus-zero, 
minus-add, 
add-commutes, 
condition-implies-le, 
le-add-cancel, 
zero-add, 
add-associates, 
add_functionality_wrt_le, 
not-equal-2, 
not-lt-2, 
quot_rem_exists, 
istype-void, 
gcd_p_sym, 
gcd_p_shift, 
mul-commutes, 
mul-distributes, 
mul-distributes-right, 
minus-one-mul, 
mul-swap, 
mul-associates, 
add-swap, 
add-mul-special, 
zero-mul, 
squash_wf, 
true_wf, 
istype-int, 
add_functionality_wrt_eq, 
mul_com, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
multiplyEquality, 
addEquality, 
dependent_set_memberEquality, 
hypothesis_subsumption, 
levelHypothesis, 
equalitySymmetry, 
equalityTransitivity, 
applyEquality, 
addLevel, 
unionElimination, 
computeAll, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
productElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
natural_numberEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
Error :dependent_pairFormation_alt, 
hyp_replacement, 
applyLambdaEquality, 
Error :universeIsType, 
Error :productIsType, 
Error :inhabitedIsType, 
minusEquality, 
independent_functionElimination, 
Error :isect_memberEquality_alt, 
Error :lambdaEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality
Latex:
\mforall{}b:\mBbbN{}.  \mforall{}a:\mBbbZ{}.    \mexists{}u,v:\mBbbZ{}.  GCD(a;b;(u  *  a)  +  (v  *  b))
Date html generated:
2019_06_20-PM-02_22_20
Last ObjectModification:
2019_01_11-AM-09_03_44
Theory : num_thy_1
Home
Index