Nuprl Lemma : quot_rem_exists
∀a:ℤ. ∀b:ℕ+.  ∃q:ℤ. ∃r:ℕb. (a = ((q * b) + r) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
ge: i ≥ j 
, 
subtract: n - m
Lemmas referenced : 
nat_plus_wf, 
istype-int, 
decidable__le, 
quot_rem_exists_n, 
le_wf, 
int_seg_wf, 
int_subtype_base, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMinus_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__equal_int, 
istype-false, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
less_than_wf, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
minus-add, 
mul-distributes-right, 
add-associates, 
minus-one-mul, 
mul-associates, 
mul-commutes, 
add-swap, 
add-commutes, 
add-mul-special, 
zero-mul, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
unionElimination, 
Error :dependent_set_memberEquality_alt, 
isectElimination, 
productElimination, 
Error :dependent_pairFormation_alt, 
setElimination, 
rename, 
sqequalRule, 
Error :productIsType, 
Error :equalityIsType4, 
Error :inhabitedIsType, 
applyEquality, 
addEquality, 
multiplyEquality, 
because_Cache, 
minusEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}b:\mBbbN{}\msupplus{}.    \mexists{}q:\mBbbZ{}.  \mexists{}r:\mBbbN{}b.  (a  =  ((q  *  b)  +  r))
Date html generated:
2019_06_20-PM-02_22_13
Last ObjectModification:
2018_10_05-PM-05_45_41
Theory : num_thy_1
Home
Index