Nuprl Lemma : quot_rem_exists

a:ℤ. ∀b:ℕ+.  ∃q:ℤ. ∃r:ℕb. (a ((q b) r) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + all: x:A. B[x] exists: x:A. B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q nat: uall: [x:A]. B[x] prop: exists: x:A. B[x] nat_plus: + subtype_rel: A ⊆B int_seg: {i..j-} uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) guard: {T} ge: i ≥  subtract: m
Lemmas referenced :  nat_plus_wf istype-int decidable__le quot_rem_exists_n le_wf int_seg_wf int_subtype_base nat_plus_properties full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMinus_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_wf decidable__equal_int istype-false int_seg_properties nat_properties decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma less_than_wf itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma minus-add mul-distributes-right add-associates minus-one-mul mul-associates mul-commutes add-swap add-commutes add-mul-special zero-mul zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin natural_numberEquality hypothesisEquality unionElimination Error :dependent_set_memberEquality_alt,  isectElimination productElimination Error :dependent_pairFormation_alt,  setElimination rename sqequalRule Error :productIsType,  Error :equalityIsType4,  Error :inhabitedIsType,  applyEquality addEquality multiplyEquality because_Cache minusEquality independent_isectElimination approximateComputation independent_functionElimination Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation equalityTransitivity equalitySymmetry

Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}b:\mBbbN{}\msupplus{}.    \mexists{}q:\mBbbZ{}.  \mexists{}r:\mBbbN{}b.  (a  =  ((q  *  b)  +  r))



Date html generated: 2019_06_20-PM-02_22_13
Last ObjectModification: 2018_10_05-PM-05_45_41

Theory : num_thy_1


Home Index