Nuprl Lemma : quot_rem_exists_n

a:ℕ. ∀b:ℕ+.  ∃q:ℕ. ∃r:ℕb. (a ((q b) r) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + nat: all: x:A. B[x] exists: x:A. B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] guard: {T} int_seg: {i..j-} nat_plus: + nat: ge: i ≥  lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  int_term_value_mul_lemma itermMultiply_wf int_term_value_add_lemma itermAdd_wf primrec-wf2 less_than_wf set_wf decidable__lt all_wf equal_wf exists_wf le_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma int_formula_prop_not_lemma intformeq_wf itermSubtract_wf intformnot_wf decidable__le lelt_wf false_wf int_seg_subtype subtract_wf decidable__equal_int int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt nat_properties nat_plus_properties int_seg_properties nat_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid hypothesis thin sqequalHypSubstitution isectElimination natural_numberEquality because_Cache hypothesisEquality setElimination rename productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll unionElimination addLevel applyEquality equalityTransitivity equalitySymmetry setEquality levelHypothesis hypothesis_subsumption dependent_set_memberEquality addEquality multiplyEquality functionEquality introduction independent_functionElimination

Latex:
\mforall{}a:\mBbbN{}.  \mforall{}b:\mBbbN{}\msupplus{}.    \mexists{}q:\mBbbN{}.  \mexists{}r:\mBbbN{}b.  (a  =  ((q  *  b)  +  r))



Date html generated: 2016_05_14-PM-04_18_53
Last ObjectModification: 2016_01_14-PM-11_42_27

Theory : num_thy_1


Home Index