Nuprl Lemma : log-property

[b:{i:ℤ1 < i} ]. ∀[x:ℤ].  (x ≤ b^log(b;x))


Proof




Definitions occuring in Statement :  log: log(b;n) exp: i^n less_than: a < b uall: [x:A]. B[x] le: A ≤ B set: {x:A| B[x]}  natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T log: log(b;n) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: less_than: a < b squash: T less_than': less_than'(a;b) true: True nat: sq_stable: SqStable(P) le: A ≤ B
Lemmas referenced :  exp-as-genfact log_wf genfact-inv_wf nat_plus_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than sq_stable__le genfact_wf le_witness_for_triv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis Error :lambdaEquality_alt,  because_Cache Error :universeIsType,  independent_isectElimination Error :lambdaFormation_alt,  dependent_functionElimination unionElimination natural_numberEquality approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :dependent_set_memberEquality_alt,  closedConclusion imageMemberEquality baseClosed Error :inhabitedIsType,  imageElimination Error :equalityIstype,  equalityTransitivity equalitySymmetry productElimination Error :isectIsTypeImplies,  Error :setIsType

Latex:
\mforall{}[b:\{i:\mBbbZ{}|  1  <  i\}  ].  \mforall{}[x:\mBbbZ{}].    (x  \mleq{}  b\^{}log(b;x))



Date html generated: 2019_06_20-PM-02_32_37
Last ObjectModification: 2019_02_11-AM-11_59_13

Theory : num_thy_1


Home Index