Nuprl Lemma : log-property
∀[b:{i:ℤ| 1 < i} ]. ∀[x:ℤ].  (x ≤ b^log(b;x))
Proof
Definitions occuring in Statement : 
log: log(b;n)
, 
exp: i^n
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
log: log(b;n)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
le: A ≤ B
Lemmas referenced : 
exp-as-genfact, 
log_wf, 
genfact-inv_wf, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
sq_stable__le, 
genfact_wf, 
le_witness_for_triv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
Error :lambdaEquality_alt, 
because_Cache, 
Error :universeIsType, 
independent_isectElimination, 
Error :lambdaFormation_alt, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
closedConclusion, 
imageMemberEquality, 
baseClosed, 
Error :inhabitedIsType, 
imageElimination, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
Error :isectIsTypeImplies, 
Error :setIsType
Latex:
\mforall{}[b:\{i:\mBbbZ{}|  1  <  i\}  ].  \mforall{}[x:\mBbbZ{}].    (x  \mleq{}  b\^{}log(b;x))
Date html generated:
2019_06_20-PM-02_32_37
Last ObjectModification:
2019_02_11-AM-11_59_13
Theory : num_thy_1
Home
Index