Nuprl Lemma : mul_wf_nzero
∀[a,b:ℤ-o]. (a * b ∈ ℤ-o)
Proof
Definitions occuring in Statement :
int_nzero: ℤ-o
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
multiply: n * m
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int_nzero: ℤ-o
,
uimplies: b supposing a
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
Lemmas referenced :
int_nzero_wf,
nequal_wf,
equal_wf,
int_formula_prop_wf,
int_formula_prop_not_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_and_lemma,
intformnot_wf,
itermConstant_wf,
itermVar_wf,
intformeq_wf,
intformand_wf,
satisfiable-full-omega-tt,
int_nzero_properties,
int_entire_a
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
dependent_set_memberEquality,
multiplyEquality,
sqequalHypSubstitution,
setElimination,
thin,
rename,
hypothesisEquality,
lemma_by_obid,
isectElimination,
independent_isectElimination,
hypothesis,
lambdaFormation,
natural_numberEquality,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
because_Cache
Latex:
\mforall{}[a,b:\mBbbZ{}\msupminus{}\msupzero{}]. (a * b \mmember{} \mBbbZ{}\msupminus{}\msupzero{})
Date html generated:
2016_05_14-PM-04_27_30
Last ObjectModification:
2016_01_14-PM-11_34_58
Theory : num_thy_1
Home
Index