Nuprl Lemma : not-prime-mult

[n,m:{2...}]. ∀[x:ℤ].  prime((n m) x))


Proof




Definitions occuring in Statement :  prime: prime(a) int_upper: {i...} uall: [x:A]. B[x] not: ¬A multiply: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False all: x:A. B[x] and: P ∧ Q prop: int_upper: {i...} subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top atomic: atomic(a) reducible: reducible(a) int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  cand: c∧ B iff: ⇐⇒ Q
Lemmas referenced :  prime-mult prime_wf int_upper_wf int_upper_properties mul_preserves_le upper_subtype_nat false_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf le_wf prime_imp_atomic subtype_rel_sets nequal_wf intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base assoced_elim assoced_wf not_wf equal_wf exists_wf int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis productElimination because_Cache voidElimination isectElimination multiplyEquality setElimination rename sqequalRule lambdaEquality intEquality isect_memberEquality natural_numberEquality applyEquality independent_isectElimination independent_pairFormation dependent_set_memberEquality unionElimination approximateComputation dependent_pairFormation int_eqEquality voidEquality setEquality baseClosed minusEquality productEquality

Latex:
\mforall{}[n,m:\{2...\}].  \mforall{}[x:\mBbbZ{}].    (\mneg{}prime((n  *  m)  *  x))



Date html generated: 2019_06_20-PM-02_23_14
Last ObjectModification: 2018_09_22-PM-06_07_09

Theory : num_thy_1


Home Index