Nuprl Lemma : one_divs_any

a:ℤ(1 a)


Proof




Definitions occuring in Statement :  divides: a all: x:A. B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T divides: a exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  equal_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf itermMultiply_wf itermVar_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation intEquality dependent_pairFormation hypothesisEquality cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache hypothesis unionElimination isectElimination natural_numberEquality independent_isectElimination lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll multiplyEquality

Latex:
\mforall{}a:\mBbbZ{}.  (1  |  a)



Date html generated: 2016_05_14-PM-04_15_48
Last ObjectModification: 2016_01_14-PM-11_42_56

Theory : num_thy_1


Home Index