Nuprl Lemma : positive-prime-divides-product
∀p:{p:ℕ| prime(p)} . ∀qs:{p:ℕ| prime(p)}  List.  ((p | reduce(λx,y. (x * y);1;qs)) ⇒ (p ∈ qs))
Proof
Definitions occuring in Statement : 
prime: prime(a), 
divides: b | a, 
l_member: (x ∈ l), 
reduce: reduce(f;k;as), 
list: T List, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
lambda: λx.A[x], 
multiply: n * m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
so_apply: x[s], 
top: Top, 
prime: prime(a), 
and: P ∧ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
not: ¬A, 
assoced: a ~ b, 
false: False, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
guard: {T}, 
uimplies: b supposing a
Lemmas referenced : 
positive-prime-divides-prime, 
equal_wf, 
cons_member, 
one_divs_any, 
decidable__equal_nat, 
decidable__equal_set, 
sq_stable__l_member, 
cons_wf, 
nil_wf, 
set_wf, 
reduce_cons_lemma, 
reduce_nil_lemma, 
list_wf, 
l_member_wf, 
reduce_wf, 
divides_wf, 
prime_wf, 
nat_wf, 
list_induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setEquality, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
intEquality, 
multiplyEquality, 
natural_numberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
dependent_set_memberEquality, 
addLevel, 
productElimination, 
levelHypothesis, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
unionElimination, 
inlFormation, 
inrFormation, 
independent_isectElimination
Latex:
\mforall{}p:\{p:\mBbbN{}|  prime(p)\}  .  \mforall{}qs:\{p:\mBbbN{}|  prime(p)\}    List.    ((p  |  reduce(\mlambda{}x,y.  (x  *  y);1;qs))  {}\mRightarrow{}  (p  \mmember{}  qs))
Date html generated:
2016_05_14-PM-04_27_17
Last ObjectModification:
2016_01_14-PM-11_37_40
Theory : num_thy_1
Home
Index