Step
*
2
1
2
1
of Lemma
search_succ
1. k : ℕ
2. P : ℕk + 1 ⟶ 𝔹
3. ¬↑(P 0)
4. (∃i:ℕk. (↑(P (i + 1))))
⇐ 0 < search(k;λi.(P (i + 1)))
5. (↑(P ((search(k;λi.(P (i + 1))) - 1) + 1))) ∧ (∀j:ℕk. ¬↑(P (j + 1)) supposing j < search(k;λi.(P (i + 1))) - 1)
supposing 0 < search(k;λi.(P (i + 1)))
6. search(k;λi.(P (i + 1))) ≤ 0
7. ¬(search(k + 1;P) = 0 ∈ ℤ)
8. ∃i:ℕk + 1. (↑(P i))
9. 0 < search(k + 1;P)
10. ↑(P (search(k + 1;P) - 1))
11. ∀j:ℕk + 1. ¬↑(P j) supposing j < search(k + 1;P) - 1
⊢ ∃i:ℕk. (↑(P (i + 1)))
BY
{ ((ExRepD THEN InstConcl [i - 1]) THEN Auto) }
1
.....wf.....
1. k : ℕ
2. P : ℕk + 1 ⟶ 𝔹
3. ¬↑(P 0)
4. (∃i:ℕk. (↑(P (i + 1))))
⇐ 0 < search(k;λi.(P (i + 1)))
5. (↑(P ((search(k;λi.(P (i + 1))) - 1) + 1))) ∧ (∀j:ℕk. ¬↑(P (j + 1)) supposing j < search(k;λi.(P (i + 1))) - 1)
supposing 0 < search(k;λi.(P (i + 1)))
6. search(k;λi.(P (i + 1))) ≤ 0
7. ¬(search(k + 1;P) = 0 ∈ ℤ)
8. i : ℕk + 1
9. ↑(P i)
10. 0 < search(k + 1;P)
11. ↑(P (search(k + 1;P) - 1))
12. ∀j:ℕk + 1. ¬↑(P j) supposing j < search(k + 1;P) - 1
⊢ i - 1 ∈ ℕk
Latex:
Latex:
1. k : \mBbbN{}
2. P : \mBbbN{}k + 1 {}\mrightarrow{} \mBbbB{}
3. \mneg{}\muparrow{}(P 0)
4. (\mexists{}i:\mBbbN{}k. (\muparrow{}(P (i + 1)))) \mLeftarrow{}{} 0 < search(k;\mlambda{}i.(P (i + 1)))
5. (\muparrow{}(P ((search(k;\mlambda{}i.(P (i + 1))) - 1) + 1)))
\mwedge{} (\mforall{}j:\mBbbN{}k. \mneg{}\muparrow{}(P (j + 1)) supposing j < search(k;\mlambda{}i.(P (i + 1))) - 1)
supposing 0 < search(k;\mlambda{}i.(P (i + 1)))
6. search(k;\mlambda{}i.(P (i + 1))) \mleq{} 0
7. \mneg{}(search(k + 1;P) = 0)
8. \mexists{}i:\mBbbN{}k + 1. (\muparrow{}(P i))
9. 0 < search(k + 1;P)
10. \muparrow{}(P (search(k + 1;P) - 1))
11. \mforall{}j:\mBbbN{}k + 1. \mneg{}\muparrow{}(P j) supposing j < search(k + 1;P) - 1
\mvdash{} \mexists{}i:\mBbbN{}k. (\muparrow{}(P (i + 1)))
By
Latex:
((ExRepD THEN InstConcl [i - 1]) THEN Auto)
Home
Index