Nuprl Lemma : search_succ
∀[k:ℕ]. ∀[P:ℕk + 1 ⟶ 𝔹].
  (search(k + 1;P) = if P 0 then 1 if 0 <z search(k;λi.(P (i + 1))) then search(k;λi.(P (i + 1))) + 1 else 0 fi  ∈ ℤ)
Proof
Definitions occuring in Statement : 
search: search(k;P)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
less_than: a < b
, 
squash: ↓T
, 
subtract: n - m
, 
guard: {T}
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
int_seg_wf, 
bool_wf, 
nat_wf, 
false_wf, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
search_property, 
decidable__le, 
le_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
decidable__equal_int, 
search_wf, 
subtract_wf, 
itermSubtract_wf, 
intformeq_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
add-member-int_seg2, 
add-subtract-cancel, 
lt_int_wf, 
less_than_wf, 
le_int_wf, 
assert_of_lt_int, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
subtype_base_sq, 
int_subtype_base, 
add-commutes, 
add-associates, 
add-swap, 
int_seg_properties, 
assert_elim, 
bool_subtype_base, 
int_seg_subtype, 
all_wf, 
isect_wf, 
not_assert_elim, 
btrue_neq_bfalse, 
subtract-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
equalityElimination, 
independent_functionElimination, 
functionExtensionality, 
imageElimination, 
instantiate, 
cumulativity, 
minusEquality, 
applyLambdaEquality, 
addLevel, 
levelHypothesis
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[P:\mBbbN{}k  +  1  {}\mrightarrow{}  \mBbbB{}].
    (search(k  +  1;P)
    =  if  P  0  then  1
        if  0  <z  search(k;\mlambda{}i.(P  (i  +  1)))  then  search(k;\mlambda{}i.(P  (i  +  1)))  +  1
        else  0
        fi  )
Date html generated:
2017_04_17-AM-09_52_59
Last ObjectModification:
2017_02_27-PM-05_48_25
Theory : num_thy_1
Home
Index